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Abstract. In this work, the Aharonov–Casher (AC) phase is calculated for spin-1 particles in a non-
commutative space. The AC phase has previously been calculated from the Dirac equation in a non-
commutative space using a gauge-like technique. In the spin-1 case, we use the Kemmer equation to calculate
the phase in a similar manner. It is shown that the holonomy receives non-trivial kinematical corrections. By
comparing the new result with the already known spin-1/2 case, one may conjecture a generalized formula
for the corrections to holonomy for higher spins.

PACS. 02.40.Gh; 03.65.Pm

1 Introduction

In the last few years, theories in non-commutative space
have been studied extensively (for a review see [1]).
Non-commutative field theories are related to M-theory
compactification [2], string theory in non-trivial back-
grounds [3] and the quantum Hall effect [4]. Inclusion
of non-commutativity in quantum field theory can be
achieved in two different ways: via the Moyal ∗-product
on the space of ordinary functions, or via defining the
field theory on a coordinate operator space which is in-
trinsically non-commutative [1, 5]. The equivalence be-
tween the two approaches has been nicely described in [6].
A simple insight on the role of non-commutativity in
field theory can be obtained by studying the one par-
ticle sector, which prompted interest in the study of non-
commutative quantum mechanics [7–14]. In these stud-
ies some attention was paid to the Aharonov–Bohm ef-
fect [15]. If the non-commutative effects are important
at very high energies, then one could posit a decoupling
theorem that produces the standard quantum field the-
ory as an effective field theory and that does not recall
the non-commutative effects. However, the experience
from atomic and molecular physics strongly suggests that
the decoupling is never complete and that the high en-
ergy effects appear in the effective action as topological
remnants. Along these lines, the Aharonov–Bohm and
Aharonov–Casher effects have already been investigated
in a non-commutative space [16, 17]. In this work, we will
develop a method to obtain the corrections to the topo-
logical phase of the Aharonov–Casher effect for spin-1
particles, where we know that in a commutative space
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the line spectrum does not depend on the relativistic
nature of the dipoles. The article is organized as fol-
lows; in Sect. 2, we discuss the Aharonov–Casher effect
for spin-1 particles on a commutative space. In Sect. 3,
the Aharonov–Casher effect in a non-commutative space
is studied and a generalized formula for holonomy is
given.

2 The Aharonov–Casher effect

In 1984 Aharonov and Casher (AC) [18] pointed out that
the wave function of a neutral particle with non-zero mag-
netic moment µ develops a topological phase when trav-
eling in a closed path which encircles an infinitely long
filament carrying a uniform charge density. The AC phase
has been measured experimentally [19]. This phenomenon
is similar to the Aharonov–Bohm (AB) effect. The sim-
ilarities and the differences of these two phenomena and
possible classical interpretations of the AC effect have been
discussed by several authors [20–22]. In [18], the topo-
logical phase of the AC effect was derived by considering
a neutral particle with a non-zero magnetic dipole mo-
ment moving in an electric field produced by an infinitely
long filament carrying a uniform charge density. If the
particle travels over a closed path which includes the fila-
ment, a topological phase will result. This phase is given
by

φAC =

∮
(µ×E)dr , (1)

where µ = µσ is the magnetic dipole moment and σ =
(σ1, σ2, σ3), where σi (i = 1, 2, 3) are the 2×2 Pauli ma-
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trices. It is possible to arrange that the particle moves in
the x–y plane and travels over a closed path which in-
cludes an infinite filament along the z-axis. The electric
field in the point r = xî+yĵ, where î and ĵ are unit vec-
tors in the direction of the positive x and y axes, is given
by

E=
λ

2π(x2+y2)
(xî+yĵ) , (2)

where λ is the linear charge density of the filament, and the
phase is given by

φAC = µσ3

∮
(k̂×E) · dr= µσ3λ , (3)

where k̂ is a unit vector along the z-axis. This phase
is purely quantum mechanical and has no classical in-
terpretation. The appearance of σ3 in the phase repre-
sents the spin degrees of freedom. We see that differ-
ent components acquire phases with different signs. This
is also one of the points that distinguishes the AC ef-
fect from the AB effect [23]. In this part, we briefly ex-
plain a method for obtaining (3). The equation of motion
for a neutral spin-1/2 particle with a non-zero magnetic
dipole moment moving in a static electric field E is given
by

(
iγµ∂

µ+
1

2
µσαβF

αβ−m

)
ψ = 0, (4)

or it can be written as

(iγµ∂
µ− iµγ ·Eγ0−m)ψ = 0 , (5)

where γ = (γ1, γ2, γ3) and the γ-matrices are defined
by

γ0 =

(
I 0
0 −I

)
γi =

(
0 σi
−σi 0

)
. (6)

We define

ψ = eafψ0 , (7)

where a is the matrix to be determined below, f is a time
independent scalar phase, and ψ0 is a solution of the Dirac
equation

(iγµ∂
µ−m)ψ0 = 0 . (8)

Writing ψ0 in terms of ψ and multiplying (8) by e
af from

the left, we obtain

eaf (iγµ∂µ−m) e
−afψ = 0 (9)(

ieafγµe−af∂µ− ie
afγie−afa∂if −m

)
ψ = 0 . (10)

Comparing (10) with (5), we find that a and f must sat-
isfy

µγ ·Eγ0 = (γ ·∇f)a , aγµ = γµa . (11)

The matrix a can be expressed by some linear combi-
nation of the complete set of 4×4 matrices 1, γ5, γµ, γµγ5
and σµν =

i
2 [γµ, γν ]. The second member of (11) cannot

be satisfied if all γ1, γ2 and γ3 are present in (10). How-
ever, it is possible to satisfy it if the problem in question
can be reduced to the planar one. This indicates that the
AC topological phase can arise only in two spatial dimen-
sions. Therefore, let us consider the particle moving in the
x–y plane in which case only the matrices γ1 and γ2 are
present in (11), and moreover, ∂3ψ and E3 vanish. The
choice −iσ12γ0 represents a consistent Ansatz. From the
first equation in (11), we get

∇f = µ(k̂×E), (12)

and the phase is given by

φ(0) = σ12γ0

∮
∇f · dr

= µσ12γ0

∮
(k̂×E) · dr

= µ

(
σ3 0
0 −σ3

)∮
(k̂×E) · dr . (13)

One may extend this method to spin 1 using the first order
Kemmer equation (for a more complete explanation and
derivation see [24]). The Kemmer equation is defined by

(iβµ∂µ−m)ψ = 0 , (14)

where the β-matrices are generalizations of the Dirac
gamma matrices. These satisfy an algebra ring, which for
spin 1 is

βµβνβρ+βρβνβµ = ηµνβρ+ηνρβµ . (15)

These Kemmer β-matrices are reducible; that is, the
16× 16 representation decomposes into three separate
representations: a one dimensional trivial representation;
a five dimensional spin zero representation; and the 10−d
spin-1 representation [24–26]. This algebra is odd; that is,
it cannot reduce the matrix operator to the identity, unlike
the Dirac algebra. In this paper we choose the 10−d spin-
1 representation which is given by the following 10× 10
matrices:

β0 =

⎛
⎜⎜⎝
Ô Ô I o†

Ô Ô Ô o†

I Ô Ô o†

o o o 0

⎞
⎟⎟⎠

βj =

⎛
⎜⎜⎝
Ô Ô Ô −iKj†

Ô Ô Sj o†

Ô −Sj Ô o†

−iKj o o 0

⎞
⎟⎟⎠ , (16)

where the elements are

Ô =

⎛
⎝0 0 0
0 0 0
0 0 0

⎞
⎠ , I =

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ (17)
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S1 = i

⎛
⎝0 0 0
0 0 −1
0 1 0

⎞
⎠ , S2 = i

⎛
⎝ 0 0 1
0 0 0
−1 0 0

⎞
⎠ ,

S2 = i

⎛
⎝0 −1 01 0 0
0 0 0

⎞
⎠ (18)

o=
(
0 0 0

)
,

K1 =
(
1 0 0

)
, K2 =

(
0 1 0

)
, K3 =

(
0 0 1

)
.

(19)

Just as in Dirac theory, the Lorentz invariance of the
Kemmer theory entails a transformation of the spinor
so that the matrix representation remain the same. The
Lorentz generator for these transformations, Sµν , is pro-
portional to the antisymmetric product of two matrices of
the ring,

Sµν = b(βµβν −βνβµ) . (20)

These generators satisfy the well known commutation re-
lation and define the spin operators. The coefficient b is
linked to the coefficient of the commutation relations and
is set below according to our convenience. The equation
of motion for a neutral spin-1 particle with an anomalous
magnetic moment in Kemmer theory is

(
iβµ∂

µ+
1

2
µSαβF

αβ−m

)
ψ = 0 . (21)

The interaction term emerges from the derivation of a sec-
ond order Kemmer equation following the method of
Umezawa [26]. The operator component of the phase in the
spin-1 AC phase solution is a spin-1 pseudo-vector opera-
tor defined by

ξµ =
i

2
εµνλρβ

νβλβρ . (22)

The path dependent phase proportional to ξ3 is intro-
duced in the free Kemmer equation of motion [17] thus

(iβµ∂µ−m) e
iξ3
∫ r A·drψ = 0 , (23)

with the intention to transform this into the equation of
motion (21) with the anomalous magnetic moment term.
Multiplying (23) by e(−iξ3

∫ r Adr) from the left and com-
paring with (21), we obtain

exp

[
−iξ3

∫ r
A · dr

]
βν exp

[
iξ3

∫ r
A · dr

]
= βν ,

(24)

−βνξ3Aνψ =
1

2
µSαβF

αβψ = µS0iF
0iψ . (25)

By using the Baker–Hausdorff formula in the first condi-
tion, it is easy to see that for ν �= 3 the commutators are
zero. However for ν = 3 the commutators do not vanish and
so the first condition restricts the dynamics to 2+1 dimen-
sions, just as the spin-1/2 case.

By a direct calculation in the second line and using the
definition of the ξ3-, β

ν - and Sµν -matrices one has

A1 =−2µE2 , A2 = 2µE1 . (26)

Finally the AC phase for a closed path is given by

φAC = ξ3

∮
A · dr= 2µξ3

∫
S

(∇·E)dS = 2µξ3λ .

(27)

3 The spin-1 AC effect
on a non-commutative space

The non-commutative Moyal spaces can be realized as
spaces where the coordinate operator x̂µ satisfies the com-
mutation relations

[x̂µ, x̂ν ] = iθµν , (28)

where θµν is an antisymmetric tensor and is of space di-
mension (length)2. We note that space-time non-commu-
tativity, θ0i �= 0, may lead to some problems with unitarity
and causality. Such problems do not occur for quantum
mechanics on a non-commutative space with a usual com-
mutative time coordinate. The non-commutative models
specified by (14) can be realized in terms of a ∗-product:
the commutative algebra of functions with the usual prod-
uct f(x)g(x) is replaced by the ∗-product Moyal algebra:

(f ∗ g)(x) = exp

[
i

2
θµν∂xµ∂yν

]
f(x)g(y)|x=y . (29)

As for the phase space, as inferred from string theory, we
choose

[x̂i, x̂j ] = iθij , [x̂i, p̂j ] = ih̄δij , [p̂i, p̂j ] = 0 . (30)

The non-commutative quantum mechanics can be defined
by [7–14]

H(p, x)∗ψ(x) =Eψ(x) . (31)

The equation of motion for a neutral spin-1 particle with
a non-zero magnetic dipole moment moving in a static elec-
tric field E is given by

(
iβµ∂

µ+
1

2
µSαβF

αβ−m

)
∗ψ = 0 . (32)

As in [17] we define

ψ = eiξ3fψ0 , (33)

where ξ3 is the matrix already defined, f is a time indepen-
dent scalar phase, and ψ0 is a solution of the free Kemmer
equation

(iβµ∂
µ−m)ψ0 = 0 . (34)
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By using the Baker–Cample–Hausdorff formula and
[βµ, ξ3] = 0, (32) can be written as

−βµ∂µ(ξ3f)e
iξ3fψ0+

µ

2
SαβF

αβ ∗
(
eiξ3fψ0

)
= 0 .

(35)

After expanding the second term in (35) up to the first
order of the non-commutativity parameter θij = θεij and
defining kj as

∂jψ0 = (ikj)ψ0 (36)

the final result up to first order in θ is given by

[
−βµ∂µ(ξ3f)+µ

(
S0lF

0l+
i

2
θij∂i

(
S0lF

0l
)
∂j(iξ3f)

+
i

2
θij∂i

(
S0lF

0l
)
(ikj)

)]
exp[iξ3f ]ψ0 = 0 . (37)

It should be noted that the expansion of F 0l or E up
to first order in θ leads to an additive correction to the
commutative holonomy and does not cause a new non-
topological behavior. A similar situation occurs in the non-
commutative Aharonov–Bohm effect. By expanding f up
to first order in θ,

f = f (0)+ θf (1)+ . . . , (38)

we obtain the following equations:

[
−βµ∂µ

(
ξ3f

(0)
)
+µ
(
S0lF

0l
)]
ψ0 = 0 (39)[

−βµ∂µ
(
ξ3f

(1)
)
+
iµ

2
εij∂i

(
S0lF

0l
)
∂j

(
iξ3f

(0)
)

+
iµ

2
εij∂i

(
S0lF

0l
)
(ikj)

]
ψ0 = 0 , (40)

by choosing b= 2 in (20), and after a straightforward calcu-
lation, we get

∇f (0) = 2µ(k̂×E) , (41)

which is equivalent to (26), and the phase is given by

φ(0) = ξ3

∮
∇f (0)dr

= 2µξ3

∮
(k̂×E)dr . (42)

Substituting (42) in (40) and then using the wave func-
tions which are given in [24], a long but straightforward
calculation (the Mathematica package is used) yields the
following correction to φ(0) for a neutral particle with non-
zero magnetic dipole moment µ and with spin 1 (ms =

1, 0,−1):

�φθ = θξ3

∮
∇f (1)dr

=
θ

2
ξ3ε
ij

(
µ

∮
kj(∂iE2dx1−∂iE1dx2)

−2ms

∮
[(µ∂iE2)µ(k̂×E)j dx1

− (µ∂iE1)µ(k̂×E)j dx2]

)
, (43)

where ms = 1, 0,−1. The first term is a velocity depen-
dent correction and does not have the topological proper-
ties of the commutative AC effect and could modify the
phase shift. The second term is a correction to the vor-
tex and does not contribute to the line spectrum. Using
ms = 1/2,−1/2 the integral in (43) can be mapped to the
corrections which have already been obtained for the spin-
1/2 Aharonov–Casher effect in [17], (32). One may conjec-
ture that (43) is also valid for higher spins. It is interesting
to extend these results to higher order terms; however, it
seems that obtaining an exact result similar to the commu-
tative case is not possible by these methods. For some other
interesting relevant papers see [27–30].
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